1 Fig. 8 shows part of the curve $y=x \cos 2 x$, together with a point P at which the curve crosses the x-axis.

Fig. 8
(i) Find the exact coordinates of P .
(ii) Show algebraically that $x \cos 2 x$ is an odd function, and interpret this result graphically.
(iii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(iv) Show that turning points occur on the curve for values of x which satisfy the equation $x \tan 2 x=\frac{1}{2}$.
(v) Find the gradient of the curve at the origin.

Show that the second derivative of $x \cos 2 x$ is zero when $x=0$.
(vi) Evaluate $\int_{0}^{\frac{1}{4} \pi} x \cos 2 x \mathrm{~d} x$, giving your answer in terms of π. Interpret this result graphically.

2 Fig. 8 shows part of the curve $y=x \sin 3 x$. It crosses the x-axis at P . The point on the curve with x-coordinate $\frac{1}{6} \pi$ is Q .

Fig. 8
(i) Find the x-coordinate of P .
(ii) Show that Q lies on the line $y=x$.
(iii) Differentiate $x \sin 3 x$. Hence prove that the line $y=x$ touches the curve at Q .
(iv) Show that the area of the region bounded by the curve and the line $y=x$ is $\frac{1}{72}\left(\pi^{2}-8\right)$. [7]

3 The function $\mathrm{f}(\mathrm{x})=\ln \left(1+x^{2}\right)$ has domain $-3 \leqslant x \leqslant 3$.
Fig. 9 shows the graph of $y=f(x)$.

Fig. 9
(i) Show algebraically that the function is even. State how this property relates to the stape of the curve.
(ii) Find the gradient of the curve at the point $\mathrm{P}(2, \ln 5)$.
(iii) Explain why the function does not have an inverse for the domain $-3 \leqslant x \leqslant 3$.

The domain of $\mathrm{f}(x)$ is now restricted to $0 \leqslant x \leqslant 3$. The inverse of $\mathrm{f}(x)$ is the function $\mathrm{g}(x)$.
(iv) Sketch the curves $y=f(x)$ and $y=g(x)$ on the same axes.

State the domain of the function $g(x)$,
Show that $\mathrm{g}(x)=\sqrt{\mathrm{e}^{x}-1}$.
(v) Differentiate $\mathrm{g}(r)$. Hence verify that $\mathrm{g}^{\prime}(\ln 5)=1 \frac{1}{4}$. Explain the connection between this result and your answet to part (ii).

